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Overview  

This deliverable D6.1.2 is the following draft manuscript to be submitted as a WISER 
paper to a refereed journal:  

-------------------------------------------------------------------------------------------------------------------- 

Assessing uncertainty of indicators of Water Framework Directive ecological status class 

 

Ralph T. Clarke 

Centre for Ecology and Environmental Sciences, School of Applied Sciences, Bournemouth 
University, Talbot Campus, Poole, Dorset, BH12 5BB, UK 

 

Abstract 

Since the introduction of the European Union Water Framework Directive in 2000, considerable 
effort has been made the Member States to develop biological assessment and monitoring 
systems for the ecological status class of all of their water bodies (river stretches, lakes, 
transitional and coastal waters) based on one or more biological quality elements (fish, 
macroinvertebrates, diatoms-phytoplankton, macrophytes and physical habitats). In accordance 
with the WFD, these assessment systems have usually been derived by the use of one or more 
biological indices (often termed metrics) derived from the sampled biological taxonomic 
composition and diversity, which are converted to Ecological Quality Ratios (EQRs) through 
standardised by reference condition values of the metric(s) for each water body type and then 
classified into one of five ecological status classes. All of these steps and every sampling and 
other methodological decisions you make can affect the waterbody assessment and are potential 
sources error or uncertainty.  

In this paper, the various sources of uncertainty are considered in more detail. The best-available 
datasets for assessing uncertainty in WFD status class of UK rivers based on macroinvertebrate 
sampling are used to demonstrate how spatial and  temporal variance in metric values can be 
estimated. New free-available software WISERBUGS (WISER Bioassessment Uncertainty 
Guidance Software) is described which can help to quantify the effect of  this estimated 
sampling variability on the confidence of assigning water bodies to status classes. 

 

Keywords 

Water Framework Directive, WFD, uncertainty, confidence, ecological status class, sampling 
variation, metric, multi-metric indices 

 



 
 
Deliverable D6.1-2: Uncertainty components and their assessment  

 

Page 5/24 

1. Introduction 

Any ecological index is of little use without some understanding of the sources and sizes of the 
sampling error and other uncertainties in its estimation (Clarke et al., 1996).  

The European Water Framework Directive (WFD) (European Union, 2000) requires Member 
States to assess, monitor and, where necessary, improve the ecological quality of its water 
bodies (river stretches, lakes, transitional/estuarine and coastal waters). The WFD prescribes 
that such bioassessments should be based on the values for one or more Ecological Quality 
Ratios (EQRs), each classified into one of five ecological status classes (high, good, moderate, 
poor, bad), where the EQRs represents the extent of discrepancy between the values of 
biological parameters observed for a water body (WB) and the values of the same parameters 
expected for that type of WB if it was in reference condition. The biological parameters usual 
summarise some aspect of taxonomic diversity or composition as quantitative indices (often 
referred to as metrics)  The overall status class for a WB is based on the use of EQRs and 
estimated status classes for one or more sampled (or surveyed) biological quality elements 
(BQEs), namely fish, macroinvertebrates, diatoms-phytoplankton, macrophytes and physical 
habitats. The WFD ecological status class of European rivers, lakes, transitional and coastal 
waters has been one of the most high profile “ecological indicators”.  Any such classification 
measures of aquatic ecological quality are of little value without some knowledge and 
quantitative estimates of their susceptibility to sampling/surveying error and other uncertainties 
and of the confidence in assigning individual water bodies to ecological status classes. In 
recognition of this, the WFD states that ‘estimates of the confidence and precision attained by 
the monitoring system used shall be stated in the river basin monitoring plan’ (European Union, 
2000, Annex V, section 1.3.4). 

Understanding the causes of change, and especially decline, in WFD ecological quality and 
providing advice on measures to improve quality, including for water body management plans, 
requires some quantitative knowledge of the relationship between potential stressor variables 
and the biotic response measures (Johnson et al. 2006). This relationship is often assessed by 
developing statistical or maybe more mechanistic models, calibrated by field observations and 
estimates of all variables and model parameters. If the modelled relationship between observed 
values of the biotic metric and the estimated values of the stressor variable(s) is very good, then 
not only must the underlying relationship be strong (although necessarily causal), but the 
sampling errors in the observed biotic metric values for each waterbody (or site) must be low 
relative to the total variance in metric values between all WB in the relationship (Fig. 1(a)). (In 
addition, the estimation errors for the stressor variable values (e.g. lake mean annual total 
phosphorus concentration) for a each waterbody must be small relative to the total variance in 
stressor variable values amongst all waterbodies of the same type (i.e. same estimated/predicted 
reference condition values). However if, as is common in field-based ecological modelling, the 
observed data-based biotic-stressor relationship is not very strong, then it is important and very 
useful to know whether this is because the underlying true relationship is weak (cases (b) and 
(d) in Fig. 1) or because the true relationship is strong but spoilt by our high sampling errors in 
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estimating the biotic metric values (case (c) in Fig.1). Therefore in any such modelling, for 
WFD or other objectives, it is useful to determine the sampling variance (i.e. precision) in the 
estimates of site and waterbody biotic index values, especially relative to between-waterbody 
and total variability amongst all waterbodies, sites and samples of similar types (e.g. with 
similar reference condition values).  

 

 

Fig.1 Relationships amongst sites between observed values of biotic index and pressure variable 
Differentiating three possible causes (b-d) of a poor relationship requires estimating sampling 
precision of biotic index (horizontal bar and vertical lines denote water body index true mean and 
sampling error respectively) 

 

In their recent review of the achievements made in the first 10 years of the WFD, Hering et al. 
(2010) concluded that “Future challenges still remain, including the estimation of uncertainty in 
assessment results and a revision of rules in combining the results obtained with different 
Biological Quality Elements”. This current paper attempts to contribute towards improving 
understanding and assessment of sampling and other uncertainties in estimates of metrics, EQRs 
and WFD ecological status class and the implications for confidence and uncertainty of multi-
metric and multi-BQE water body assessments. 
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2.  Bioassessment uncertainty 

 

It is useful to remember that an estimate of a water body status class is made, and assumed to 
apply, for both a specific area in space (i.e. the water body, lake, estuary or stretch of river) and 
for a period in time (the assessment period) which could be one day, one month, one season, one 
year or maybe, three or five years (in the case of national long-term surveillance monitoring).    

 

2.1 Sources of bioassessment uncertainty 

The total uncertainty and potential error in estimating the true status class for a WB for a period 
is due to the combined effects of: 

(i) spatial biological variability within the WB 

(ii)  temporal biological variation within the assessment period 

(iii)  the choice of sampling/surveying methods and sampling personnel 

(iv) the sub-sampling and sample processing protocols, including taxonomic 
identification   and variation in expertise of personnel used 

(v) errors in setting appropriate reference condition values due to limitations in the 
available reference sites’ data and/or uncertainty in the predictive modelling of their 
biota-environment relationships 

(vi) the choice of biological indices and the method of their conversion to EQRs 

(vii)  the choice of status class limits 

(viii)  the choice of multi-metric indices and class rules and/or multi-BQE rules.  

 

It is useful to be remain aware that every methodological decision you make can affect the WB 
assessment and its true uncertainty. However, the practical way to progress is to acknowledge 
that there is no absolute true or correct WB classification protocol. We should therefore aim, at 
least initially, to assess the uncertainty in our bioassessments due to the spatial and temporal 
sampling variation and sample processing errors, conditional on the chosen overall WB 
classification protocol, namely conditional on the choice of BQEs, sampling/surveying methods, 
metrics, EQRs and status class rules. This is estimating the sampling precision of our chosen 
method. In one sense, the actual accuracy (variation about the “true” WB value) is unknowable 
as the true quality depends on which subjective aspects of the biota and which methods we use 
to define WB quality. We can only assess a form of accuracy by the strength of some form of 
correlation between our biotic measures and independent WB condition measures based on the 
extent of anthropogenic modifications and stresses operating at the water body (Johnson et al. 
2006). However, the emphasis of the WFD approach is to base assessments on the biological 
rather than the chemical conditions. In the longer term we should try to compare different WB 
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classification protocols (based on different methods, metrics, reference sites, BQEs and status 
class rules), to learn from their discrepancies and improve our bioassessment protocols. 

Ideally, each potential source of uncertainty in our WB assessments should be scientifically 
assessed and quantified, either from suitable existing datasets, or else from new scientific studies 
specifically designed with replication at the appropriate spatial and temporal field scale, 
replication of any sub-sampling, and/or use of multiple personnel to assess the extent of inter-
operator effects metric and status class variability for a water body. 

This can help us revise our monitoring sampling design for each water body and our overall bio-
assessment methodology to improve the precision and/or cost-effectiveness of our monitoring 
scheme. If we understand which sources of variation make substantial contributions to the 
uncertainty associated with an assessment, monitoring strategies can be designed to reduce this 
uncertainty and hopefully give an acceptable level of confidence. 
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3.  Estimating spatial and temporal sampling varian ces 

The WFD status class for a waterbody is usually based on the one or more metrics from one or 
more BQEs. For any one metric, the metric value (and derived EQR) used for a waterbody is   
usually based on some form of average of the metric values from the samples obtained from that 
waterbody over the assessment and monitoring reporting period.  

In order to derive estimates of the sampling uncertainty for the estimated metric (and EQR) 
value for a water body, it is necessary to have estimates of the various sources of spatial, 
temporal and sampling processing errors relevant to that WB and period of time. 

 

3.1  Example using macroinvertebrate datasets and m etrics for UK rivers 

As a real example illustrating the effects of spatial and temporal variability on the uncertainty of 
water body, I use results from an analysis of a combination of UK government environment 
agencies’ UK datasets for river macroinvertebrate samples based on the RIVPACS sampling 
and sampling processing procedures (Murray-Bligh, 1997) and the RIVPACS bioassessment 
system(Clarke et al. 2003) (Table 1).  

For WFD reporting purposes, the UK agencies propose reporting the river quality for each river 
water body (i.e. cohesive river stretch) as the average quality over a three year period.  The 
RIVPACS approach uses a predictive statistical model of the macroinvertebrate-environment 
relationship between UK-wide reference sites to set site-specific expected (E) values for each 
macroinvertebrate metric which are then compared with the observed (O) values as EQR (O/E) 
ratios. The expected values are also season specific to allow for natural variation in 
macroinvertebrates between (RIVPACS) sampling seasons (Feb-May, June-Aug, Sept-Nov) 
(Clarke et al. 2003). Therefore, the sources of variance in the observed (O) values of metrics 
which affect the sampling variance of river water body average quality over a three-year period 

are replicate sampling variability at the same site on the same day (2
Rσ ), spatial variability 

between sampling sites within the water body (2
Sσ ), within-season ( 2

Wσ ) and between-year-

within-period ( 2
Yσ ) temporal variability (Table 1). There is also a potential spatio-temporal 

interaction variance.  

Although the datasets are the best available for the UK, they are not ideal as no single dataset 
enables us to estimate all of the above variance components across a wide range of water bodies 
(Table 1). However, it was possible to fit a statistical mixed model to the combined datasets 
involving (assumed constant) average values for each variance component while allowing for 
(fixed effect) differences between combinations of water bodies, seasons and periods. The 
mixed models were fitted using the REML (Residual Maximum Likelihood) procedure within 
the Genstat statistics package, but can also be fitted using the lme and lmer mixed model 
functions in the R programming language.  
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Table 1. Spatial, temporal and replicate sampling data structure of UK river sites datasets, together 
with the sampling uncertainty variance components which can be estimated from each dataset.  

Dataset Sampling structure 

BAMS 16 study sites (4 qualities  x  4 physical types)  x 3 seasons  

      x  3 replicates ( 1st & 3rd operator A, 2nd operator B) – one year only 

TAY 28 (mostly good/high quality) sites in Tay region of Scotland 

       x  4 replicates   x  2 seasons per year for most years over period 1988-1997 

SEPA 418 Scottish SEPA sites (from high to bad quality) sampled in each of 2-3 
seasons per year over period 1990-2004 (181 cases of 2 samples on different 
days in same season)   

DOVE Dove Catchment in Central England : 5 WFD waterbodies with 3, 2, 3, 1 and 1 
monitoring sites per water body (moderate to high variable quality),  mostly 
one sample in spring and autumn for most years 1983-2007  

 

 Variance components (Y denotes dataset contributes data to estimation) 

 Replicate 
Within-season 

temporal 
Inter-year within 

3-yr period 

Between site 
within WB 

Spatial 

BAMS Y    

TAY Y  Y  

SEPA  Y Y  

DOVE   Y Y 

 

Further details of the datasets and the approaches used to estimate variance components are 
given in Clarke (2009). The variance component models were fitted to each of the two 
macroinvertebrates indices which are currently used for national assessments and monitoring of 
UK rivers, namely the number of BMWP (Biological Monitoring Working Party) families 
present (NTAXA) and the BMWP Average Score Per Taxon of the families present (ASPT). 
The richness metric NTAXA was analysed on the square root scale as Clarke et al. (2002) 
showed that this transformation removed the tendency for replicate sampling variance of 
NTAXA to increase with the replicate mean NTAXA value for a river site and thus made 
sampling variance independent of site type and quality, supporting the use of single variance 
component estimates for all river sites (when based on the RIVPACS sampling protocol). 
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Table 2. Estimates of replicate, temporal and spatial sampling variance components of 
macroinvertebrate metrics (ASPT and the square root of NTAXA) based on a combination of UK 
river sites datasets 

 Variance estimate (% of total in brackets) 

 Replicate 
Within-season 

temporal 
Inter-year within 

3-yr period 
Between site within 

WB (Spatial) 

Metric σ2
R σ2

W σ2
Y σ2

S 

√NTAXA 0.0576 (37%) 0.0350 (22%) 0.0365 (23%) 0.0266 (17%) 

ASPT 0.0654 (28%) 0.0596 (26%) 0.0209 (9%) 0.0873 (37%) 

  

For these two indices, on average, roughly one-third (28% ASPT, 37% NTAXA) of the total 
variance in values which occurs within a water body over a three year assessment period is due 
to simple variability in values between replicate samples taken at any single sample site on a 
single day (Table 2). The RIVPACS macroinvertebrate sampling protocol used is a multi-habitat 
fixed time sampling method with no sub-sampling for the identification of taxa present; using a 
less reliable method might lead to greater inter-replicate variability. Based on this limited 
analysis, spatial variability between sites within a WB is a greater source of the total within-WB 
sampling variance for ASPT (37%) than for NTAXA (17%), suggesting that the type of taxa 
(i.e. their nutrient stress tolerances and BMWP scores) varies relatively more between possible 
sampling sites within a water body than the macroinvertebrate taxonomic richness. 

 

3.2  Sampling precision of water body biological me tric values  

Having estimates of the various variance components for indices enables us to assess which 
metrics (and sampling methods) are most susceptible to sampling variability. For example, 
within the Europeam FP5 STAR project (Furse et al. 2006), Clarke et al. (2006,a,b) estimated 
the  replicate sampling (and sub-sampling) variance as a percentage (Psamp) of the total variance 
in metric values across all samples and sites of varying quality within a WFD stream type for 
each of a wide range of European macroinvertebrate sampling methods and stream types; 
metrics and methods with relatively low Psamp have higher sampling precision and greater 
potential to provide reliable measures of river status class.  

The variance component estimates for the selected metrics can be used to estimate the typical 
sampling precision obtained with each of a range of sampling regimes for a WB monitoring 
scheme. This can help design the most cost-effective sampling scheme for assessing and 
monitoring ecological quality using these metrics. 

Consider the previous UK rivers macroinvertebrates example, where the WFD assessment is 
based on the average quality and thus average index values for a water body over a three-year 
period.  If a sampling scheme involves taking r replicate samples at each of s sampling sites on 
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each of w dates within the sampling season in each of y years (1, 2 or 3) within the 3-year 

assessment period, then the sampling variance (2
Mσ ) of the mean metric value is : 

  syywyrswy SYWRM //)3/1(// 22222 σσσσσ +−++=                              (Eq. 1) 

There are only three years in any one WFD reporting period and therefore if samples have been 
taken in all three years, the years are effectively temporal statistical strata and the variance 
between years does not influence the sampling precision of the WB period mean. When 
sampling has not occurred in some years, the estimate of average quality for the whole period is 
potentially biased as some ‘strata’ have not been sampled. However, within the framework of 
using variance components, this extra uncertainty has be included as a term involving typical 
inter-year within-period variance but with a finite population correction (1-y/3) to allow for the 
fraction of all (i.e. 3) years sampled (Cochran, 1977). A similar logic applies to spatial 
stratification of a WB into zones or area-defined habitat types. For example, if a lake has been 
sub-divided into sections (such as near, mid and far-shore, or shallow, mid-water and deep 
sampling zones) and one or more samples taken from each section, then the sections are 
effectively statistical strata and the sampling variance of the sample mean metric value for the 
whole lake does not depend on the variance in metric values between sections if they have all 
been sampled, but it does depend on the variance between sites within each section. However, it 
is important to have some understanding of how much variability in the biota and metric values 
occur between spatial sections and (potential) strata relative to other sources of sampling 
uncertainty, as this will guide whether the water body sampling scheme can benefit from using 
such sections as statistical strata. 

 

3.3  Confidence of status class depends on precisio n of sampling scheme 

It is misleading to say “this is (definitely) the class of this water body”. It is more realistic to say 
“we estimate these are the probabilities of this water body being of each status class based on 
our sampling/survey design for this assessment period and this assessment method”. Given the 
WFD goal for Member States to achieve good or better ecological status for all water bodies 
(ideally by 2015 but with possible extension to 2027, (Hering et al., 2010)), then it is especially 
useful to have estimates, based on our monitoring and assessment scheme, of the confidence 
(i.e. probability Ppass) that each WB is of good or better status or conversely the confidence (Pfail 
= 1 – Ppass) that the WB failed to achieve good status. With limited resources for remediation 
measures, it is important to concentrate efforts on improving those water bodies for which we 
are most confident the ecological status is inadequate, within the practicalities of any river basin 
management plan. The confidence with which we can assign a water body to a WFD status class 
and the likelihood of failing to achieve good or better status are dependent on the accuracy with 
which we can estimate the WB mean values of the metrics (and EQRs) involved in the chosen 
bioassessment method. This depends heavily on the precision of our sampling scheme for the 
water body over the assessment period (Table 3). Taking more replicate samples from the same 
site on the same day, although the cheapest form of replication, only reduces uncertainty due to 
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small-scale spatial heterogeneity between samples from the same site on the same day. At the 
other extreme, if the sole aim was to estimate average WB quality over the three year period, a 
statistically efficient strategy might be to take a sample from one (or more) different site(s) in 
each year, as this provides some spatial and temporal coverage replication (scheme 4 in Table 2) 
even though with such a scheme we cannot identify the relative importance of  spatial and 
temporal variability in the observed metric values. 

 

Table 3. Illustrative example of how confidence of water body (WB) status class depends on 
sampling scheme (1-4) used to estimate WB metric mean values. Observed mean ASPT = 6.4,  
good/moderate class boundary ASPT value for this WB type = 6.0, variance component 
estimates as in Table 2; observed class is ‘good’, Pfail = probability true class is moderate or 
worse 

 
Replicate 
variance 

Within-
season 

temporal 

Inter-year 
within 3-yr 

period 

Between 
site within 
WB Spatial 

Variance 
of mean 

Pfail 

 σ2
R σ2

W σ2
Y σ2

S σ2
M  

Sampling 0.0654 0.0596 0.0209 0.0873   

Scheme r w y s   

1 1 1 1 1 0.2262 20% 

2 3 1 1 1 0.1826 17% 

3 1 1 3 1 0.1290 13% 

4 1 1 1 different site each year 0.0562 5% 

 

3.4  Uncertainty of class depends on the spatial an d temporal scale of 
extrapolation     

In many monitoring schemes for a river stretch or lake, it is often only possible to take a 
biological sample or survey at one site on one occasion on which to estimate ecological quality. 
The WFD (European Union, 2000, Annex V, section 1.3.4) recommends that for operational 
monitoring using macroinvertebrates, fish or macrophytes, sampling/surveying should be at 
least once every three years. The resulting estimates of ecological status are often implicitly 
intended to represent average quality over the three year period  It is useful to realise that the 
confidence we can have that this is the true ecological status class diminishes with the area in 
space and period in time over which this assessment is used to represent quality, or more 
specifically average quality; as illustrated in Table 4. 
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Table 4. Confidence of estimated water body status class depends on spatial and temporal extent of 
application/extrapolation. Example of one sample taken at one site on one day with observed ASPT 
= 6.4,  good/moderate class boundary ASPT = 6.0, variance component estimates as in Table 2; 
PGood = Confidence of observed (Good) class or better 

Spatial-temporal scale for 
assessment 

Uncertainty variance 
Estimated 
uncertainty  
Variance 

PGood 

same site -same day σ2
R 0.0654 94% 

same site – season average σ2
R +σ2

W 0.1250 87% 

same site – 3 year average σ2
R +σ2

W+σ2
Y 0.1459 85% 

whole water body- 3 year average σ2
R +σ2

W+σ2
Y+σ2

S 0.2332 80% 
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4.  Uncertainty of Reference Conditions and convers ion of metrics 
to EQRs 

The WFD requires that the observed (O) values of metrics are standardised to EQRs, ideally on 
a scale 0-1. A general approach to achieving for this is by the standardisation : 

 
01

0

EE

EO
EQR

−
−=    (equation 2) 

where  E1 = Reference Condition value (= value of metric for which EQR = 1) 

 and  E0 = value of metric for which EQR = 0 

Any EQR values calculated from equation (2) which are negative are always reset to zero. The 
EQR could be a RIVPACS-type O/E ratio where E1 is set a RIVPACS model-based site-specific 
expected value and E0 is set to zero. When several EQRs are used to create a multi-metric index 
(MMI) by averaging their values, each EQR is forced into the range 0-1 by setting any EQR 
values greater than 1 to 1. 

 

4.1  Potential sources of error in setting Referenc e Condition values of metrics 

A wide range of factors can influence the errors in estimates or model-based predictions of the 
Reference Condition values (upper “anchor” value E1) of each metric for the group of sites or 
water bodies to be assessed. These include: 

(i) Inadequate information & knowledge 

               - Inadequate set of RC sites for all or some WB types 

                     - Not involving all “relevant” environmental variables 

                          (e.g. WFD System A or B Types or predictive model variables) 

                    - Not making optimum predictive model  

                         (e.g. RIVPACS type model v Neural Networks (e.g. from the EU PAEQANN 

                          project); mechanistic model functions/parameters) 

(ii)  Sampling variation in RC sites’ sample data (SE of mean) 

(iii)  Inconsistent data  

                   - Existing Data from different sampling methods/standards combined to set RC 

                   - Test site’s observed sample value and RC data values based on (partially) 

                     different sampling methods 

 

Similarly, errors in estimating the lower “anchor” value (E0) will also have implications for 
EQR values; this is especially important for multi-metric indcies, where individual metric EQR 
values are directly averaged prior to sub-division to status classes. 
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4.2  Method for setting Reference Condition values for a metric 

Various methods of setting the Reference Condition (E1) value of a particular metric for a 
particular site/waterbody or environmental-similar group of sites/waterbodies can be used 
depending the data available. Obviously the reference condition or high quality sites used to 
determine the E1 values should be sampled in the same way as the samples for the sites being 
assessed. The following are several possible options in roughly decreasing order of preference.  

i) If  a suitable RIVPACS-type predictive model involving an adequate number of 
environmental similar reference condition sites is available, then the E1 values are best 
based on RIVPACS-type site- and season- specific predictions of the expected fauna and 
metric values. 

ii)  In the absence of a RIVPACS model, if a suitable number of reference condition sites of 
an environmentally-similar type  are available, the E1 values can be based on the mean or 
median metric value for these sites. 

iii)  If a suitable number of an environmentally-similar type of ‘high’ quality sites (of 
uncertain reference condition) are available, the E1 values can be based on the mean, 
median or perhaps an upper percentile (75% or 90%) value of the metric for these sites. 

iv) If only a very small number of an environmentally-similar type of ‘high’ quality sites (of 
uncertain reference condition) are available, then the E1 values cannot be reliable 
estimated and might be based using the maximum of the few values available. However, 
the maximum value is not a stable measure and increases with the number of sites on 
which it is based. 

v) If no ‘reference condition’ or ‘high’ status sites are available then, some form of hind-
casting or extrapolation to reference conditions will be necessary to provide appropriate 
values of E1. 
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5.  Ecological assessments based on multiple metric s and/or 
multiple BQEs 

The WFD requires that the status class for any WB, whether river, lakes, transitional or coastal 
water, should be based on one or more metrics and EQRs derived from each BQE and then the 
overall WB assessment should be based on combining the individual BQE assessments. In 
particular, the WFD (European Union, 2000, Annex V, section 1.4.2 (i)) requires that the overall 
class for a WB “shall be represented by the lower of its values (classes) for the biological and 
physico-chemical monitoring results for the relevant quality elements”. The choice of BQEs to 
involve depends on their perceived reliability in measuring and responding to changes in 
pressures on this type of water body. Part of this reliability is determined by the susceptibility of 
each BQE and metric to sampling uncertainty.   

 

5.1  Consequences of uncertainty on use of ‘Worst c ase’ rules  

The WFD prescribes use of the worst-case or “one-out all-out” (OOAO) rule, whereby the 
overall class for a WB is the worst of the classes based on each individual BQE. Although this 
may be logical as a precautionary rule in an ideal world where the status based on each BQE can 
be measured without error; in practice the inevitable uncertainty associated with the sample-
based estimated class for each metric and BQE leads to problems of probable under-estimation 
of the true overall class. As a simple illustration, if the true mean value for a WB is just above 
the Good/Moderate (G/M) boundary when based on each of M indices,  then for each index, 
there is roughly a 50:50 change that the sample mean value will be below the G/M boundary. In 
the worst case rule, the probability than all M sample mean index values will be above the G/M 
boundary is 0.5M, so with say M=3 indices, the probability that the WB will be classified as 
moderate of worse is very high 0.875 (1 – 0.53) even though the true mean value on each 
individual index would classify the WB as Good or better (Table 4). 

 

Table 4. Illustration of implications of sample variability on use of worst case (one-out-all-out) rule 
on multiple BQEs or indices (assuming sampling uncertainty of BQEs or indices  is uncorrelated) 

BQE (or index) 
Probability sample estimated 
EQR  is ‘moderate or worse 

Examples 

  (a) (b) 

B1 P1 0.5 0.3 

B2 P2 0.5 0.3 

B3 P3 0.5 0.2 

Worst case 1 - (1-P1)*(1-P2)*(1-P3) 0.875 0.608 
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More importantly, even when the individual indices or BQEs true mean vales are well above the 
G/M boundary, using the worst case rule can still lead tot he overall WB class being more likely 
than not estimated as moderate or worse. 

The precision of using a worst case rule or a multi-metric index can be reduced by adding an 
extra metric with relatively high sampling variance and low precision (for details see Clarke et 
al. 2006b) 

Borja (2010) compared the use of the OOAO principle with an alternative existing integrated 
assessment, based on the same multiple BQE data (chemical, phytoplankton, macroalgae, 
macroinvertebrates and fish) for 14 transitional and 4 coastal water bodies in the Basque region 
of Northern Spain over the period 2002-08. He found that the OOAO method indicated a lower 
status class than the integrative method for 18% of 125 (WB by year) cases for coastal waters 
and 58% of 224 cases for transitional waters. Borja (2010) found that the majority of 
disagreements for transitional waters were due to the observed sample status class for 
macroalgae being lower than for the other elements noted that macroalgae were considered to 
have the lowest reliability. Re-assessments excluding macroalgae reduced the disagreements 
between OOAO and the Borja’s integrated approach from 58% to 32%, with the OOAO method 
now showing greater agreement of general improvement in WB quality with time (Fig.2 in 
Borja 2010).  

 

One solution to problem of implementing the OOAO rule with large-scale sampling variability 
might be to adjust individual index EQR class limits downwards; but then individual metrics 
will have less power to detect moderate or worse quality. This is a complex issue as the ideal 
adjustment might depend on the number of other indices or BQEs involved.  

I suggest that a better approach might be to take the median of the classes based on the 
individual indices and/or individual BQEs to be used in the overall WB status classification. 
Such an approach is an option in the new WISERBUGS software (Clarke 2011) discussed 
below. 
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6 Estimation of SD of waterbody mean value using th e R software 
package 

As an example, suppose we have taken two (NR = 2) replicates macroinvertebrate samples from 
each of three (NS = 3) sites around a lake and our best estimates of the metric variance due to 
between replicate variability and between site spatial variability for this WB are VR (say 0.48) 
and VS (say 0.36) respectively, then the estimate of the uncertainty SD associated with the lake 
mean metric value across the six samples is the square root of:  

VS / NS  +  VR /(NR x NS)  =   0.36 /3 + 0.48 /(2 x 3) = 0.12 + 0.08 = 0.20 ; thus SD = 0.447 

and this would the estimate of the uncertainty SD of this metric for this lake required for input 
into the WISERBUGS software (see section 7) to assess confidence of status class. 

If sampling scheme had involved taking all six sample from the same site (avoiding inter-site 
travel and equipment transport costs), then the uncertainty SD would be much higher: 

VS / NS  +  VR /(NR x NS)  =   0.36 /1 + 0.48 /(6 x 1) = 0.36 + 0.08 = 0.44 ; thus SD = 0.663. 

Sampling at a single site around the lake can never reduce the uncertainty SD below 0.6 (i.e. 
below the square root of the between-site variance of 0.36)  

If the degree of sampling and spatial replication varies between sites and water bodies, then the 
formula for the estimated variance and thus SD of the WB mean metric value is more complex, 
but here we give a brief illustrative example of how these estimates can be obtained using the R 
software package  

The software package R is freely available from www.r-project.org. This package has several 
routines which can be used to fit mixed models (that is those involving both ‘fixed’ level factors 
and ‘random’ level factors 

If the estimates of variance components for a set of waterbodies are obtained by analysing their 
replicate, spatial and (maybe) temporal variability all together using a mixed model approach in 
the R software package using the routine lme or lmer, treating WB as a ‘fixed’ effect factor, then 
the estimates of both the mean and its SD for each WB (even with unequal replication) are 
automatically available in the model ‘summary’ as Fixed effects ‘Values’ and ‘Std.Error’ 
respectively. 

Figure 2 illustrates the approach and mixed model output using R. It  is an example involving a 
single metric ‘BioIndex’ for each of 4 samples from each of 9 sites from each of 8 lakes (1-8), 
except for lake 5 which only had one sample from each of 6 sites. It shows how to specify the 
correct mixed model in the R lmer routine and how the lmer output for the lakes treated as a 
‘fixed’ effect gives the estimate of the lake mean metric value (as ‘value’) and its SD ( as 
‘Std.Error’). Notice the larger SE for lake 5, because of its lack of replication and fewer 
sampling sites.  

The above WB mean values derived by R routine lmer (or lme) can be used directly as inputs 
into WISERBUGS as observed WB metrics values in the ‘Observed metrics values file’. 
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Also, the above estimates of the SD of the WB mean values derived by R routine lmer (or lme) 
can be used directly as inputs into WISERBUGS as the Uncertainty SD for that metric in 
column I  of the ‘Metric specification file’ 

Figure 2: Illustrative output from R mixed model analysis showing how to obtain estimates of 
the uncertainty standard deviation (SE) for a water body sample mean observed metric value 
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7.  General approach for assessing status class uncertainty using 
WISERBUGS  

New software called WISERBUGS (WISER Bioassessment Uncertainty Guidance Software) 
has been written within the WISER project to provide a general means of using simulations to 
assess uncertainty and confidence in any estimates of ecological status class for water bodies 
based on either single metrics or a combination of metrics, multi-metric indices (MMIs) and 
multi-metric rules. The User provides prior estimates of the relevant sampling uncertainty for 
each metric and metric value to be involved in the water body assessments, together with metric 
status class limits and the rules for combining metrics into an overall water body assessment. 

WISERBUGS is designed to be as generic as possible, so that it can be used with a wide range 
of metrics derived from field site sampling and survey data for any single or combination of 
biological quality elements (BQEs, namely phytoplankton, aquatic flora, macroinvertebrates 
and/or fish) and any type of water body (rivers, lakes, transitional or coastal waters). 

The program requires the User to provide a ‘Metric Specification File’ in EXCEL format, in 
which they specify which metrics are to be used to determine the site or waterbody 
bioassessments, the individual metric uncertainty estimates and the multi-metric rules for 
combining information from individual metrics.  

The uncertainty in the estimate of the (usually) mean value of a metric for a water body depends 
on the level of sampling replication on which it was based in terms of replicate sampling, spatial 
and temporal sampling coverage over the area of the water body to be assessed and the period of 
time for which the water body assessment is to apply.  The estimates of uncertainty in individual 
metric values can include the sampling standard deviation (SD) due to sampling/sub-sampling 
variation and (optionally) the SD and bias due to sample sorting and identification.  

In practice the uncertainty SD estimates for each metric for each water body or site to be 
assessed within WISERBUGS must be based on best-available information from replicated 
sampling studies on this or environmentally-similar water bodies. 

The WISERBUGS software and User Manual is freely-downloadable from the WISER web-site 
(www.wiser.eu). 
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