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Abbreviations: 

WB = Water Body, the entity of water management according to the Water Framework 
Directive (WFD) 

BQE = Biological Quality Element, organism groups demanded for assessment and monitoring 
of water ecological status (fish, benthic macroinvertebrates, aquatic macrophytes, angiosperms, 
marine macroalgae, benthic freshwater algae, phytoplankton) 

EQR = Ecological Quality Ratio, ratio of observed assessment index value to the expected value 
under reference conditions; EQRs represent normalised index values on a numerical scale 
between 0 and 1 
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Rationale for workshop 
Any indices of ecological quality and derived estimates of ecological status class of any water 
body (WB) with regard to the Water Framework Directive are of limited value without some 
understanding and quantitative estimates of their susceptibility to sampling variation and other 
sources of uncertainty. In recognition of this, the Water Framework Directive (WFD) (Council 
of the European Communities 2000) states “Estimates of the confidence and precision of the 
results provided by the monitoring programmes shall be given in the plan” (WFD Annex V, 
Section 1.3 “Monitoring of ecological status of surface waters”) (Figure 1). 

Classify into WFD Ecological status classes
“Bad” “Poor” “Moderate” “Good” “High”

EQR
10

Ecological Quality Ratio  =  Observed value of biotic index
(EQR)                             Reference Condition value

Aim: “Good” or better status
for all water bodies (WB) 
by 2015

Uncertainty of class ?

is required by WFD

Probability WB is “Moderate” or worse ?

Probability of a real change in EQR or status ?

WFD and UNCERTAINTY ?

 
Figure 1 Understanding and estimates of uncertainty in assigning water bodies to WFD status class are 
requirements of the WFD. 

The WISER project is primarily concerned with investigating and enhancing effective use of 
biological metrics and tools to assess the ecological status of lake (Module 3), coastal and 
transitional waters (Module 4). For lake WBs, the Biological Quality Elements (BQEs) to be 
considered and assessed are phytoplankton (WP3.1), macrophytes (WP3.2), macroinvertebrates 
(WP3.3) and fish (WP3.4). For coastal and transitional waters WB, the BQEs to be assessed for 
performance are phytoplankton (WP4.1), benthic macroflora (WP4.2), macroinvertebrates 
(WP4.3) and fish (WP4.4). Each of these WPs include objectives to assess and compare the 
uncertainty of individual metrics and/or methods arising from the various potential sources of 
sampling variation and errors. The relative precision of metrics will be used to help guide the 
final selection of metrics for assessing each WB type and estimates of sampling precision of 
selected metrics will be used to calculate estimates of uncertainty of estimates of ecological 
status class (WFD classes ‘high’, ‘good’, ‘moderate’, ‘poor’ and ‘bad’). 
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In addition, in Module 5, the objectives include developing statistical or mechanistic models 
relating the biota of WB to their physical characteristics and the driving pressure variables in 
order to predict the response to management and climate change within rivers (WP5.1), lakes 
(WP5.2) and coastal and transitional waters (WP5.3). These WP includes aims to assess the 
uncertainty associated with the use of the models to predict the change in pressure required to 
achieve or maintain good ecological status. 

Thus the assessment of uncertainty due to natural spatial and temporal variation, sampling 
methodology, predictive modelling and other aspects of the bioassessment methodology are an 
important component of the WISER project. 

To help all of the WISER partners understand and assess aspects of sampling variation and WB 
assessment uncertainty, the project includes a special Workpackage WP6.1 on uncertainty. It 
was important to ensure that assessments of the important components of sampling variation 
were included in each WP with planned field sampling programmes (Modules 3 and 4), most of 
which were to be carried out during the early stages of the project. Therefore a workshop on 
uncertainty was arranged for the second day of the week-long project start-up meeting of the 
whole project consortium held in Mallorca on 9-13 March 2009.  

(Minutes from the full Kick-off meeting are available on the WISER Intranet as Deliverable 
D1.5.)  
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Workshop summary overview 
The uncertainty workshop was held within the week-long project start-up meeting of the whole 
WISER project consortium held in Mallorca on 9-13 March 2009. Following general 
introduction, overview and administration presentations by Daniel Hering and others from the 
UDE project lead partner on the first afternoon, the uncertainty workshop was held throughout 
the next day to encourage maximum consideration of the major sources of variation (spatial, 
temporal and methodological) for each type of WB and BQE being assessed by each WP group. 

The workshop was led by Ralph Clarke (Bournemouth University) and Iwan Jones (Centre for 
Ecology and Hydrology (CEH), now of Queen Mary University of London (QMUL)).  

The first session involved “education and training” presentations by Ralph Clarke, Iwan Jones 
and Jacob Carstensen (National Environmental Research Institute (NERI)) who are all 
researchers experienced in the assessment of aquatic sampling and modelling uncertainty 

Following these formal presentations to guide WISER partners, people then split up into small 
breakout groups for each WP in Modules 3 and 4 (i.e. for each WB type by BQE combination) 
to identify the sources of variation in their WB type (i.e. lake, coastal or transitional water) and 
in the methods used to sample that BQE.  

Throughout the rest of the informal uncertainty workshop and continuing through the WISER 
start-up meeting, each Module continued discussions and made progress on agreeing the number 
of WB (termed ‘sites’) to be sampled/surveyed of each type and quality class, in which countries 
and by which partners. The aim was to sample/survey all, or as many BQE as possible, for each 
WB selected for the WISER field campaign.  

One of the primary aims of the WISER field sampling campaign is to assess the relative size and 
importance of difference sources and scales of spatial and temporal variation on uncertainty in 
individual biological metrics and derived estimates of WB status class. Therefore discussions 
within WP groups, guided by the earlier formal presentations and with support from WP6.1 
leaders Ralph Clarke and Iwan Jones, led to draft proposals for each BQE on the number of: 

(i) stations/transects to be sampled in each WB (estimates spatial variability) 

(ii) number of replicate samples to be taken at each station and by how many different 
people (estimates sampling method replicate and operator variability) 

(iii) number of sub-samples or counts to be made from each sample and by how many 
different people (estimates sample sub-sampling, operator processing and identification 
variability) 

It was agreed that, within the 3-year time and resource constraint of the project, the field 
campaign could not adequately assess temporal variability within WB and that any estimates of 
temporal variability in the biota and derived biological metrics would be obtained from existing 
data to be collated within WISER.  
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The initial field sampling programmes developed within the uncertainty workshop follow-up 
sessions within the Kick-off meeting have subsequently been revised to agree a final set of sites 
to be sampled/survey and by whom and with details on the precise sampling/surveying and 
sampling processing protocols and methods to be used for each BQE.  

Workshop introduction with practical exercise  
The presentation session was introduced by Ralph Clarke and Iwan Jones with a practical 
exercise (“ping-pong bingo”) to illustrate the general issue of uncertainty and help bond WISER 
partners in the tasks ahead. Workpackage leaders were asked to take one sample each (an 
enumerated ping-pong ball) out of our water body (a bucket filled with water) to illustrate the 
variation between sample estimates of the true average value of the WB. In the illustrative small 
WB, the parameter we have chosen to use to represent the WB quality is the mean value of all 
possible samples from the WB; mean values of 40 or more are to treated as indicative that the 
WB is of good or better WFD status class, while WB with mean values less than 40 are used to 
indicate moderate or worse class. In our workshop WB, the true mean of the ‘metric’ was 42 – 
which was not only indicative of ‘good’ status but reputedly “the answer to everything” 
(Douglas Adams, Hitchhiker’s Guide to the Galaxy, 1978) (Figure 2). However, in the WISER 
real world, we can only estimate the truth and try to minimise and quantify our uncertainty.  

The various WISER WP leaders each took a random sample (ball) and the frequency 
distribution of the metric values was built-up with all values less than the high/good status class 
boundary value of 40 being classed as of “poor” or worse status. Figure 2 shows the true 
underlying frequency distribution of all possible sample values from our WB (bucket) whose 
mean value we are trying to estimate and indicate that using just one sample to estimate WB 
status, there was a 65% probability of classifying the WB correctly as ‘good’ or better and thus a 
35% of mis-classifying the WB as of moderate or worse status and perhaps spending 
unnecessary resource on trying to develop and implement a management plan to improve the 
status of the WB.  

The practical exercise continued by showing that if two (or more) rather than just one single 
(random) sample could be taken from a WB then the average of the metric values for the two (or 
more) samples would give a more precise estimate of the true mean value of the metric for this 
WB (Figure 3). Ralph Clarke then pointed out that, since 

standard error of the sample mean = SE = SD/√n, where 

SD = standard deviation between individual sample values and 

n = number of samples, 

then improvements in confidence of class can sometimes also be achieved by improvements in 
the basic sampling methodology which reduces the inherent variability (i.e. SD) between 
samples. This could by potentially be achieved by using different sampling equipment, sampling 
a larger area per sample, or sorting, identifying and counting a larger fraction of the field sample 
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back in the laboratory. Cost-effectiveness of different sampling techniques was discussed further 
by Iwan Jones (see below).  
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Figure 2 Frequency distribution of all possible samples in our special 'bucket' water body. 
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Figure 3 Demonstration of effect of taking two or more samples or otherwise reducing the standard error 
of the sampling method estimate on confidence of class. 
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Jannicke Moe (NIVA) pointed out that for single metrics and assuming a normal distribution of 
sampling variability, the NORMDIST function in EXCEL could be used to calculate confidence 
of class. In the workshop practical exercise example, if the true mean metric value is 42, the 
good/moderate boundary value is 40, and the SE is 6.5 (as with single samples in Figure 3), then 
the probability of correctly classifying the WB can be calculated in EXCEL by the function:  

1-NORMDIST(40,42,6.5,TRUE). 

Confidence of class and risk of mis-classification 

Ralph Clarke showed how the confidence we have that a WB belongs to each particular status 
class depends on the value of the metric in relation to the metric’s class boundaries and the 
sampling standard error of our estimate of the metric (Figure 4). In reality WB are often 
classified not on the basic of the observed values of biological metrics (such as taxonomic 
richness), but by the Ecological Quality Ratios (EQR) whereby the observed metric values have 
been standardised by the metric value expected for that type of WB if it was in ‘Reference 
Condition’ (Figure 1), as described later in the workshop for the UK RIVPACS (River 
Invertebrate Prediction And Classification System) (Wright et al. 2000).  
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Figure 4 Illustration of confidence of class and risk of mis-classification. 

Ralph Clarke highlighted how the confidence of class and the probability of misclassify a 
particular WB depends on the true mean EQR value in relation to the EQR class limits and can 
often be calculated mathematically by expressing the uncertainty SE as a percentage of the 
width of the status class intervals for the EQR (Figure 5). 
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General Probability of mis-classifying a Water Body

PM = probability of mis-classifying a WB
of any particular true quality

%ESD = uncertainty SD as %
of status class width

Mis-classification
%ESD rate (PM)

Mean Range
10% 8% 0  - 50%
30% 24% 10 - 50%
50% 39% 32 - 52%

100% 63% 62 - 66%
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Figure 5 Illustration of probability of mis-classifying a water body based on a single EQR for a range of 
sizes of the uncertainty standard deviation expressed as a percentage (%ESD) of the status class widths 
for the EQR (adapted from Clarke et al. 1996). 

 

Confidence of class and implications of using multi-metric and worst case rules 

Ralph Clarke finished the introductory section by pointing out that having sampling variation 
and other uncertainty in individual metrics and EQRs has consequences for status class 
assignments based on multi-metrics (Figure 6). Adding metrics which have very high sampling 
variances can make a multi-metric assessment less precise. Also, in applying the ‘worst case 
rule’ as recommended in the WFD for combining the WB assessments made using sample 
information from different BQEs, sampling variability and statistical implications of taking the 
worst (i.e. minimum) of our estimated individual metric classes for a WB, may cause a WB 
status class to be under-estimated (Figure 6). 
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Effect of uncertainty on use of ‘Worst case’ rules 
Metric             Probability sample EQR             Examples

(or BQE)           is ‘moderate or worse)               (a) (b)

M1                        P1                         0.5              0.3   

M2                        P2                         0.5              0.3 

M3                        P3                         0.5              0.2

Worst case         1 - (1-P1)*(1-P2)*(1-P3)              0.875          0.608

(assuming sampling uncertainty of metrics/BQEs is uncorrelated)

Precision of Worst Case (and Multi-metric indices) can be REDUCED

by adding metrics with high sampling variance and low precision

Adjust individual metric class limits downwards ?

see Clarke et al (2006b) Hydrobiologia

 
Figure 6 Consequences of uncertainty on multi-metric precision or applying the 'worst-case rule'. 
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Presentation by Ralph Clarke on sources of uncertainty and 
experiences from rivers 
Note: The word “uncertainty” is mentioned in almost every WP description of the project’s 
Description of Work and at a total of 163 times. 

Biota-pressure-environment modelling and uncertainty  

There are a wide range of potential approaches to making WFD-compliant WB biological 
assessments of WB ecological status and change in EQRs and status, but all approaches should 
involve a quantitative understanding of the major sources of uncertainty. The use of surveying 
and monitoring through sampling should obviously include studies and estimates the main 
factors responsible for variation between samples in both space and time. But it is also important 
to understanding the potential causes of lack of fit when using more mechanistic models of 
biota-pressure relationships and derived predictive estimates of the extent of pressure required to 
improve ecological status to ‘good’ or better. Ralph Clarke highlighted this by showing that if 
the statistically or mathematically modelled relationship between the observed sample biota and 
the pressure variable(s) is strong, then the correlatory (but not necessarily mechanistic) modelled 
relationship between the biota and the pressure variables must be strong and the sampling 
variability of the biotic dependent variable(s) must be relatively low (Figure 7). However, if the 
modelled relationship between the observed sample biota measure and the pressure variable(s) is 
weak, the cause could be that (a) there is only a weak underlying true relationship, (b) the 
sampling variability of the biotic measure is high or (c) both (Figure 7). 

WFD, Modelling and UNCERTAINTY ?

Biotic
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Sampling variance 
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Biotic
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Pressure 

Observed

Observed

strong     &      low                           

(a)   weak       &     low                           

(c)   weak       &     high

(b)   strong     &      high

WFD, Modelling and UNCERTAINTY ?
Sampling variance 

Can only differentiate (a) - (c)

by estimating sampling precision of biotic metric

Biotic
metric
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metric

Pressure 
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Relationship of metric
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of metricRelationship
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metric
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(a)   weak       &     low                           (a)   weak       &     low                           

(c)   weak       &     high(c)   weak       &     high

(b)   strong     &      high(b)   strong     &      high

Can only differentiate (a) - (c)

by estimating sampling precision of biotic metric  

Figure 7 Sampling uncertainty influences strength of relationship between observed biota and pressures. 
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Summary of potential factors contributing to WFD status class uncertainty 

Ralph Clarke then summarised the many potential factors which can contribute to the overall 
uncertainty and lack of confidence and reliability of ecological status class assessments and 
monitoring of change: 

Sources of uncertainty in Observed biota & metric values 

• Natural variation - Spatial  (within sites and across WB) 
•                            -  Temporal (over time period to be reported) 
• Sampling variation (method and personnel) 
• Sample processing errors (sub-sampling, sorting, counting & identification) 
• Effects of pollution or “environmental stress” or remediation to be detected 

The aim and problem is to differentiate stress or remediation effects from ‘natural’ temporal 
variability (this is part of WISER Module 5) 

 

Sources of uncertainty in setting Expected or Reference Condition (RC) biota & metric 
values 

• Inadequate information & knowledge  
                  - Inadequate set of RC sites for all or some WB types 

                  - Not involving all “relevant” environmental variables 

                     (e.g. WFD System A or B Types or predictive model variables) 

                   - Not making optimum predictive model  

                      (e.g. RIVPACS v Neural Networks; mechanistic model functions/parameters) 

• Sampling variation in RC sites’ sample data (SE of mean) 
• Inconsistent data – this is a potential problem in WISER 

                   - Existing Data from different sampling methods/standards combined to set RC  

                   - Test site’s observed sample value and RC data values based on (partially) 

                     different sampling methods 

 

Additional Sources of WB assessment uncertainty 

• Choice of metrics – some biological metrics may have high statistical sampling 
precision, but not be very informative measures of WB ecological condition 

• Choice of EQR measures 
• Method to compare Observed (O) with RC biota and metrics 

             (e.g. EQR = O / RC (as used in RIVPACS) 

                 or EQR = Likelihood of O given RC (as used in FAME EFI) 

• Choices of status class limits for each EQR 
e.g. Setting high/good boundary ? use lower 10% EQR value of Reference sites 

            or ‘expert opinion’ or maximise agreement with prior classes 
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            uncertainty with estimation and use of WFD GIG inter-calibration factors 

• Method for combining metrics, EQRs and status classes 
    - use of Multi-metrics (e.g. river macro invertebrates ICMi = weighted mean) 

                - worst-class or average/median class 

Ralph Clarke made the point that it is useful to be aware that every decision you make can affect 
the estimates of status classes of WB and their uncertainty. However, he proposed that the 
practical way to progress is to  

• Acknowledge that there is no absolute true or correct WB classification protocol 
• Assess uncertainty due to natural and sampling variation conditional on the overall 

classification protocol choice of sampling method, metrics, EQRs and class definitions 
• Try to compare different classification protocols (methods, metrics, and BQEs) and learn 

from their discrepancies and improve 
 

Experience in assessing uncertainty in river bioassessments based on RIVPACS 

The RIVPACS (River Invertebrate Prediction And Classification System) approach to assessing 
the biological of river sites is based comparing the observed biota (O) with the biota expected 
(E) under high quality or unstressed reference conditions at sites of that physical type, as 
predicted from a statistical model relation the environmental characteristics of a set of carefully 
selected high quality reference sites to their observed biota sampled in a standardised way. 
RIVPACS was slowly developed and improved over many years, mostly prior to the 
introduction of the WFD in 2000 - which it may have influenced (Moss et al. 1987, Furse et al. 
1995, Moss et al. 1999, Wright et al. 2000; Clarke et al. 2002, Clarke et al. 2003).  

Ralph Clarke described how, in the early 1990s, following the first national river survey based 
on RIVPACS, the UK RIVPACS team were asked “What are the confidence limits for the O/E 
ratios, what confidence can we have in the derived estimates of biological quality class, and how 
can we tell whether sample estimates of O/E and quality class taken in different years from a 
river site indicate real change in site quality?” This type of question about uncertainty is still at 
the heart of many of our research and assessments method developments in the WISER project, 
whether for rivers, lakes or coastal and transitional waters and whether based on 
macroinvertebrates or other BQEs. 

Replicated sampling study across a range of site types and qualities 

Ralph Clarke described how to start assessing uncertainty for the RIVPACS sampling method 
and system, the then Institute of Freshwater Ecology (IFE) RIVPACS development team 
conducted a carefully designed and balanced replicated field sampling study involving: 

             4 contrasting RIVPACS (TWINSPAN) stream types 
         x  4 quality classes (A, B, C, D)     =   16 sites 
         x  3 seasons (spring, summer, autumn)  
         x  3 replicate samples (2 x IFE person, 1 x local Agency biologist) 
                                            (samples 1 and 3)               (sample 2) 
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Sampling variability in biological metrics is likely to depend on the type or quality of site, so it 
was, and is, considered important to assess sampling variability across a range of physical types 
and qualities of site, not just amongst high quality reference sites. The variance between 
replicate sample values of the metric ‘Number of BMWP taxa’ (TAXA) was found to increase 
with the mean of the replicate values for a site. By working with the square root transformed 
values of observed TAXA (√TAXA), the variance between replicate sample values became 
roughly constant (Figure 8). 
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Figure 8 RIVPACS replicate sampling variance increase with mean but is constant on a square root 
transformed scale. 

The replicate sampling variance for the metric ASPT (BMWP ‘Average Score Per Taxon’) was 
found to be independent of site type or quality. It was also independent of the number of scoring 
taxa present, but Ralph Clarke warned that this is not necessarily true for other taxon weighting 
metrics and the pattern and size of sampling variability in each individual metric to be used in 
WB bioassessments needs to be assessed. The sampling variability (SD) of √TAXA and of 
ASPT only depended on whether the values were calculated for single season samples, or two or 
three season combined samples as often used by the UK government environment agencies in 
national surveys and long-term monitoring of UK rivers using RIVPACS (Table 1) – see Clarke 
et al. (2002) for further details.. In the mid 1990s, this and related studies helped the UK 
agencies decide that it was most cost-effective to base national surveys of river quality on two 
season (spring and autumn) combined sampling, eliminating the cost of the previous additional 
summer sampling campaign. 
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Table 1 Estimates of RIVPACS replicate sampling standard deviations (SD) for the metrics (a) square 
root of the number of BMWP taxa (√TAXA) and (b) ASPT for (1) single season samples (2) two season 
and (3) three season combined samples 

 Number of seasons samples combined for site assessment 

Metric 1 2 3 

√TAXA 0.228 0.164 0.145 

ASPT 0.249 0.161 0.139 

 

Assessing inter-operator effects and reliability of change with staff turnover 

Ralph Clarke said that the extent of sampling operator effects can be assessed by comparing 
different in metric values between replicate samples taken by the same person with differences 
in values between replicate samples taken by different people at the same site on the same day. 
In the RIVPACS study, inter-personnel differences were minor or negligible with statistical 
analysis of variance components showing that operator variance accounted for only 4% and 12% 
of the total (operator + true replicate) variance in ASPT and √TAXA respectively.  

Ralph Clarke pointed out obtaining small differences between operators (i) may be dependent on 
having well trained personnel and (ii) is crucial for our confidence in wide-scale long-term 
monitoring of change where there is likely to be a turnover of staff, as occurs with the national 
and regional environment agencies. We need to minimise the risk that observed sample changes 
in biological metrics between years are real and not merely due to being sampled by different 
staff! 

Sample processing sorting and identification errors 

In sorting and identifying the taxa in a new sample some taxa may be missed or mis-identified 
by less experienced staff. This may lead to biases and under-estimation of the site’s O/E ratio for 
number of taxa (TAXA) and maybe ASPT. 

Ralph Clarke described how, since the early 1990s, IFE/CEH have been contracted by the UK 
government environment agencies to re-analyse a proportion of all UK RIVPACS samples to 
provide an external audit and quality check. Such biological audits can provide annual estimates 
of the distribution of sample processing errors, highlights taxa which are most frequently missed 
or mis-identified and provides estimates of the biases in O/E values due to missing taxa for each 
Agency sample processing laboratory or region. Ralph Clarke also derived relationships 
between the ASPT of the missed taxa and the recorded taxon richness which he then used in the 
RIVPACS III+ software system for site assessments to correct for the current level of sample 
processing errors within a lab. Without this correction, different between years in sample 
processing accuracy would be another source of apparent variation and changes in site quality 
over time. Ralph Clarke said that since auditing begin the number of processing errors has been 
reduced – this may be due to simply having an audit scheme in which people know they may be 
checked, but also by feed-back from the identification results from the scheme and related staff 
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training. Ralph Clarke reported that Peter Haase of Senckenberg Research Institute, Germany, is 
currently developing a similar macroinvertebrate sample audit scheme for river sites in 
Germany. 

Errors in the Expected (E) fauna for RIVPACS 

When considering errors in the RIVPACS expected values: the choice of reference sites, 
environmental predictor variables and statistical prediction method used in RIVPACS were all 
treated as an integral part of the definition of the condition index. The errors in the Expected 
fauna were assumed to arise only from errors in measuring the environmental predictor variables 
for new sites. Their effect was quantified using independent measurement by all personnel for 
each of our replicated study sites. 

Computer-based sensitivity analyses were also used to assess the sensitivity of RIVPACS 
expected values for BMWP indices to errors or variation in each of the RIVPACS 
environmental predictor variables. Ralph Clarke reported that variation between people in their 
recording of stream width, depth and substratum in the field were all well within the acceptable 
tolerance limits determined by the sensitivity analysis. 

Similar types of computer-based sensitivity analysis of predictive or mechanistic models could 
be useful for other bioassessment approaches, WB types and BQEs. 

RIVPACS Uncertainty simulation model 

Ralph Clarke showed how estimates all of these above sources of variation, errors and 
uncertainty are combined within an uncertainty simulation model within the RIVPACS software 
(Figure 9).  

RIVPACS  Uncertainty Simulation model
(Same approach used in STARBUGS)

Simulated EQR =  O + S + B
E + R

actual Expected
(Reference Condition) value

random error
in estimating E
(RC model-sensitivity SE)

sorting + 
identification bias
(AUDIT estimate)

random 
sampling (+ sub-sampling)
Variation (prior SD estimate)actual Observed

value

 
Figure 9 Uncertainty simulation model to quantify EQR uncertainty and confidence of class. 
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Such Monte Carlo simulation models any us to estimate confidence limits for sample EQR 
values, confidence of class, confidence of real change in average sample EQR for a site and 
confidence of a real change in status class based on either single metrics (as shown in Figure 10) 
or more complex multi-metric or worst case rules – further details are given in Clarke (2000). 
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Figure 10 Assessing change between two samples using the RIVPACS Uncertainty simulation model. 
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Ralph Clarke said that he had initiated a similar type of uncertainty simulation approach within 
the STAR project as STARBUGS and this will be adapted for use within our WISER project as 
WISER Deliverable D6.1-3. 

Implications of spatial and temporal scale of WB bioassessment 

Ralph Clarke then used the example of very recent extensions to UK RIVPACS and its 
uncertainty estimation to highlight how the confidence of a sample estimate of ecological status 
class depends on the spatial and temporal scale over which the assessment estimate is to apply. 

In the past, UK national survey monitoring of long-term biological quality of a river stretch 
using macroinvertebrates and RIVPACS was based on sampling a single site (in spring and 
autumn combined) every one in five years. The sampling site was assumed to be representative 
of the whole stretch; stretches being formed to be as homogeneous as possible. As the sample-
based site assessment was effective just for that site in that year and RIVPACS predictions are 
both site- and season-specific, inter-season variation in observed fauna was considered to be 
controlled for and therefore the only factors which were allowed for in the assessment of 
uncertainty of status class for that site that year were (i) replicate sampling variability and (ii) 
sample processing errors/biases (sorting + identification), based on prior estimates derived from 
the replicated study and the audit. 

However, it is proposed that future UK national monitoring for the WFD will be for WFD Water 
Body units which will generally be for longer river sections for management (i.e. larger spatial 
scale) and be based on estimates of average quality across the WB over a 3-year reporting 
period. Uncertainty then depends on: 

Replicate sampling variance and sample processing errors as before 

Temporal variance (both short-term within-season and between-year (within 3-year period) 
irrespective of whether it is “natural” or anthropogenic due to changes in stresses and their 
impacts 

Spatial variance between potential sampling sites with the WB 

              +  Spatial – temporal interaction (i.e. site x year), measuring the extent to which 

                  changes in quality between years vary between sites within the WB ) 

 

Ralph Clarke said that as there was no single historical dataset on UK rivers from which all of 
the various variance components could be estimated, he had to combine datasets from different 
regions and studies. This makes statistical estimation of the variance components by analyses of 
variance, mixed model and maximum likelihood techniques both more difficult and less reliable. 
This is because the estimates of all higher level components (e.g. inter-year variance) are 
dependent to some extent on the recorded variability and estimates of variance of lower level 
components (e.g. replicate and short-term temporal variance). In general, it should be 
remembered that estimates of variance components can themselves be imprecise and dependent 
on the sites and years data available. Ralph Clarke then explained how the overall variance of an 
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estimate of the mean value of a metric or EQR for a WB over a time period depends on all of the 
various sources of sampling variability and the extent to which our sampling scheme 
encompasses and controls for the various aspects (Figure 11).  

 

Uncertainty variance depends on sampling scheme

ASPT      Reps Dates/year Years/period Sites/WB Total Probability

Variance   0.065       0.059             0.021           0.105  0.250       Failure

Scheme 1     1              1                    1              1          0.243         21% 
Scheme 2     3              1                    1              1          0.200         19% 

Scheme 3     1              1                    3              1          0.146         15% 

Scheme 4     1              1         1 different site each year 0.076           7% 

Example : Observed sampling scheme mean ASPT value for WB = 6.4

Good/Moderate boundary for this WB type = 6.0

Observed class is ‘Good’; Probability of Failure (Moderate or worse) ?

Estimates from 
previous study

 

where r = replicate samples per site per date
w = dates sampled per year (within specified season(s))
y = years sampled (1, 2 or 3) in 3-year period
s = sites sampled per water body 
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Figure 11 Estimation of spatial, temporal and replicate variance components and implications for risk of 
mis-classification using a range of sampling schemes. 
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Experiences from the EU FP5 STAR project 

In his final section Ralph Clarke highlighted the some of the experiences of assessing sampling 
method variability within the European FP5 project STAR (STAandardsiation of River 
classifciations) led by Mike Furse of CEH. Ralph Clarke said as that national macroinvertebrate 
sampling methods had already been established prior to STAR, the project team took the 
pragmatic view that it was likely that individual member states would continue with their 
existing methods for long-term monitoring compatibility. Therefore in order to assess the 
relative susceptibility of each national sampling method and sample processing protocol to 
uncertainty, at each study site, project partners took samples using both the national method and 
a standard STAR-AQEM method based on the AQEM method developed during the previous 
AQEM project (led by WISER project leader Daniel Hering) (Furse et al. 2006). Where an 
agreed ‘national’ method was unavailable, the partner collected and processed samples using the 
RIVPACS sampling protocol. The study sites in the STAR field sampling campaign were 
carefully chosen to cover a range of stream types and a range of perceived biological qualities 
within each type. Surprisingly the AQEM project had not involved any assessment of sampling 
variability.  

Ralph Clarke explained that, in order to assess the susceptibility of each method to sampling 
variability and to compare methods, STAR partners took two replicate samples in each of the 
two sampling seasons at a subset of 2-6 study sites within a total of 18 stream types spread over 
12 countries using both the STAR-AQEM protocol and either the ‘national’ or RIVPACS 
protocol. All macroinvertebrate metric sample values were calculated using the AQEM/STAR 
ASTERICS software to ensure compatibility. 

Ralph Clarke said that comparing the relative replicate sampling precision of different methods 
and of different metrics with widely different forms and units from richness to percent 
composition of certain taxonomic groups can be tricky. His solution was to use analysis of 
variance techniques to estimate the variance components (replicate, between sites, between 
seasons, between stream types) and then calculate the replicate variance in a metric as a 
percentage (Psamp) of the total variance in the metric’s values within a stream type and season 
(Figure 12). Low values of Psamp indicate that for that method and metric, replicate sampling 
variance is only a small fraction of the total variability across streams of differing perceived 
qualities in the same stream type and the sampling precision of the metric is high with the 
potential to also have statistical power to detect the effects of environmental stress on stream 
quality. In contrast, method and/or metrics with very high values of Psamp cannot have high 
power to detect effects of stress replicate sample values within a site are almost as variable as 
values from different perceived quality sites. 

Obviously high sampling precision is a requirement for a metric to be effective, but it does not 
necessarily indicate that the metric has statistical power to discriminate between stress levels 
and indicate stream quality status. Ralph Clarke thought that the use of measures like Psamp 
could be useful in our WISER project for comparing metrics and/or sampling/surveying 
methods from different BQES for lakes, coastal or transitional waters.  
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SD = Mean replicate sampling SD

PSAMP = sampling variance as % of
total variance in metric values
within a stream type

f(x) = optimum transformation to 
make sampling SD homogeneous

See Clarke & Hering (2006)

Clarke et al (2006 a,b)
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Figure 12 STAR project comparison of relative sampling precision of macroinvertebrate metrics and 
methods. 

Ralph Clarke recommended that WISER partners refer to the special issue of the journal 
Hydrobiologia devoted to the results of the STAR project (Furse et al. 2006), and especially to 
the section of papers on ‘Errors and uncertainty in Bioassessment methods’ introduced and 
summarised by Clarke and Hering (2006). 
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Presentation by Iwan Jones on uncertainty assessments based on 
experience with deep waters and lakes 
The ideal methodology, sampling strategy and metric will produce an assessment perfectly 
correlated with true differences in ecological quality, despite variation in the sample 
composition due to a variety of spatial and temporal factors. Such a tool does not exist: we have 
to be able to determine how much of the variation in assessments is due to true variation in 
quality and how much due to other factors. Uncertainty must be quantified and wherever 
possible, minimised. Only in this way can we know how confident we are that an assessment of 
a WB reflects its true ecological quality class.  

Iwan Jones presented an idealised design for the quantification of uncertainty due to sample 
collection and processing. If we understand which sources of variation make substantial 
contributions to the uncertainty associated with an assessment, monitoring strategies can be 
designed to reduce this uncertainty and give an acceptable level of confidence. 
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Figure 13 An idealised design for the quantification of uncertainty due to sample collection and 
processing. 

Cost-effectiveness of different sampling techniques 

Uncertainty is affected by factors other than spatial and temporal variation, such as the choice of 
methodology to assess the BQE and the choice of metric to use. A full understanding of 
uncertainty can help guide selection of methods to be used to make assessments of quality in the 
most cost-effective manner. Iwan Jones illustrated this with a presentation on uncertainty and 
sampling method selection in deep rivers which can be difficult, dangerous or impossible to 
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sample by the common pond-net and kick sampling methods. At each site, different sampling 
methods (air-lift, dredge, margin hand net, long-handled pond net) were used by different 
workers, with three replicate samples collected (two by one worker one by another). The effects 
of different sources of uncertainty were illustrated as within site, between site, worker-
dependent and replicate effects on the BMWP/TAXA/ASPT indices calculated for the samples. 
Together with cost estimations for each method, uncertainty was used to evaluate the cost-
effectiveness of each method (Table 2). Using the average cost to make a sample assessment by 
different techniques (here time to process samples) and the number of sample assessments 
required to achieve a set level of confidence in the result (i.e. percentage SE of the mean metric 
value), it is possible to compare the cost-effectiveness of the different techniques. This approach 
is liable to be useful when comparing novel “quick and dirty” techniques (such as use of aerial 
photography) to traditional techniques. Ideally all costs should be taken into account (i.e. 
equipment costs (e.g. boat hire), time to collect a sample, time to process samples and 
identification skill/costs of required staff). 

Table 2 Cost (total time taken) to achieve set level (10%) of variance attributable to sampling when 
sampling deep river macroinvertebrates using four different techniques (airlift, light dredge, marginal 
sweep and Long handled pond net). (ASPT = BMWP Average Score Per Taxon) 
 Technique 

 Airlift Dredge Margin LHPN 

Cost per sample (min) 267 94 147 102 

(a) BMWP 801 ∞ 1029 510 

(b) TAXA 801 2914 1617 612 

(c) ASPT 801 15040 441 1428 

In all 3 metrics 801 ∞ 1617 1428 

 

Assessing sources of variability in littoral lake invertebrates 

Iwan Jones went on to describe how an understanding of uncertainty can be used to guide the 
design of sampling strategies, using lake macroinvertebrates as an example. In this case a more 
confident whole lake assessment will be made by distributing samples across more stations 
rather than taking more replicates at each station (Figure 14). He then described how sample 
processing errors can add uncertainty (typically bias) to assessments. This applies to all BQEs; 
the realisation that a BQE is present, that its taxonomic identity may be different to those 
individuals already identified, and correctly ascribing an identity are prone to error and hence 
have the potential to influence uncertainty. Training can be used to reduce uncertainty, but 
variation among assessments made by different workers, both sample collection and processing, 
is part of the uncertainty in any assessment. Quality assurance can be used to determine bias due 
to processing mistakes. It should be remembered that the EQR is dependent upon the probability 
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of occurrence of individual taxa in both reference and observed data: the quality of the reference 
condition data is paramount. 
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Figure 14 Relationship between confidence in whole lake assessment, number of stations sampled 
around lake perimeter, and number of samples collected per station using lake macroinvertebrates and 
two indices BMWP Average Score Per Taxon (ASPT) and Acid Waters Indicator Community (AWIC). 

 

Phytoplankton uncertainty and ring tests 

Finally Iwan Jones described a recent study with Laurence Carvalho (CEH) on sources of 
phytoplankton community and metric uncertainty. Within lake variation incorporates variation 
due to: 

•  Sampling locations, both horizontally and vertically (spatial variability) 
•  Sampling variability  
•  Sub-samples and fields of view observed (sub-sample variability) 
•  Years, seasons, months, days, hours (temporal variability) 
•  Observer or analytical error (“counter” variability) 

The study focused on importance of sub-sample/counter variability and the question “Can 
uncertainty be reduced by training?” 
 
If in a ring test, one sample was taken per lake and passed between workers who each processed 
a different sub-sample, you can’t tell whether differences between workers are due to sub-
sampling variability or “counter” variability. 
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In the recent study, replicate sub-samples were taken from different stations within each of a 
range of lakes and different ‘counters’ processed the same sub-samples and variance 
components estimated and compared for importance (Table 3). In this example differences 
between counters accounted for about 10% of the total within lake variability in a phytoplankton 
metric. Different metrics quantify different aspects the BQE being assessed and, hence, do not 
necessarily respond to variation in the same way. The choice of metric to be used will influence 
the uncertainty associated with the assessment, and hence the confidence of class (Table 3). 

Table 3 Variation in lake phytoplankton metrics attributable to different sources in sample processing. 
Metrics do not perform equally. The percentage of the variation attributable to counters may be reduced 
with training; PC = 100 VC / VW, PW = 100 VW / VS + VC + VB.. B

 Sub-
sampling 

Counter 
bias 

Within-
lake 

Between- 
lakes 

% 
counter 

% 
within 

Sample 
processing 

SD 

Metric VS VC VW VB PC PW SDW

Observed Score 0.00064 0.00007 0.00071 0.00274 10 21 0.027 

EQR Score 0.01199 0.00154 0.01353 0.02155 11 39 0.116 

Log10Log10Total Biovolume 0.00146 0.00002 0.00148 0.00367 1 29 0.038 

Log10 Total Taxa recorded 0.00653 0.00096 0.00749 0.02296 13 25 0.087 

Log10 Taxa Matched 0.0064 0.00284 0.00924 0.02664 31 26 0.096 
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Presentation by Jacob Carstensen on uncertainty quantification from 
monitoring marine WB 
Jacob Carstensen showed examples of uncertainty quantification from marine monitoring data. 
He presented a schematic view of how factors causing uncertainty propagate themselves up 
through all of the stages of water body status class assessment and up management biota-
pressure management models (Figure 15). Jacob Carstensen pointed out that the CIS 
Guideline13 only requires sampling and measurement error to be included in assessments of 
confidence in estimates of WB status class 

 
Figure 15 Schematic view of propagation of uncertainty in water body bioassessment and management. 

 

Jacob Carstensen made reference to his paper (Carstensen 2007) on ‘statistical principles for 
ecological status classification of Water Framework Directive monitoring data’, published in a 
special issue of Marine Pollution Bulletin edited by Devlin Best and Haynes (2007), which is 
highly relevant to our WISER project and to which WISER partners are referred for further 
details. 

Jacob Carstensen pointed out that statistical power analyses of sample marine data often 
indicates that a prohibitively high number of samples are required to give sufficiently precise 
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estimates of biotic and nutrient metrics considered to be potential useful indicators of marine 
WB ecological status (Figure 16).  

 
Figure 16 Number of sample observations required for correct classification with a power of 80% if the 
true mean deviates by d0 from a classification boundary for the seven variables (a = 0.05) and standard 
error (s) of the mean is estimated from all stations combined)- from Carstensen (2007). 

Jacob Carstensen gave an illustrative example of the complex spatial-temporal biological 
variability which can occur within a individual marine water bodies, which explains why such 
high sampling intensities can be needed to give adequate precision of say annual mean 
chlorophyll concentration for the whole WB (Figure 17). 

Jacob Carstensen suggested that one cost-effective way to improve precision through the use of 
statistical modelling techniques to try to understand and control for variation due to systematic 
seasonal variation and other influential covariates factors (Figure 18). 

The take-home messages were: 

• There should be increased use of modelling and new sampling techniques for reduce 
random variation 

• All “available data” should be used for indicators 
• Metric and uncertainty parameters should be estimated from a mixture of models of 

monitoring data and experiments designed to estimate uncertainties 

Page 29/34 



 
 
Deliverable D6.1-1: Report on Uncertainty Workshop 

 

 

 
Figure 17 Example of high small scale spatial-temporal patchiness and larger scale trends in chlorphyll-a 
concentrations within a marine WB. 

 

 
Figure 18 Example of seasonal adjustment modelling of log chlorophyll-a concentrations from a 
monitoring station at Limfjorden estuarine complex in Denmark. 
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Breakout groups to consider how to assess uncertainty within each 
WP 
Following the formal Uncertainty workshop presentations, each WP within Modules 3–5 formed 
a small breakout group to identify the major sources of variation and uncertainty and to discuss 
the most effective and affordable sampling programme and analytical approaches to measure 
and quantify some of these aspects of uncertainty. 

Provisional plans of each Module and WP for the field sampling 
programme involving assessment of sources of sampling variation 
As a result of discussions during the uncertainty workshop and throughout the WISER Start-up 
meeting, plans for the field sampling campaign were improved to provide better and more 
comprehensive study of some of the perceived major sources of uncertainty. Most WP now 
included field sampling plans to assess spatial variability within water bodies together with 
variability between WB for each of several combinations of pre-assessed quality class and types 
of lake and coastal/transitional water. Figure 19 gives the state of draft field sampling plans 
shortly after the workshop and WISER Start-up meeting for agreed modification by the 
individual WP leaders.  

Updated details of the WISER field sampling plans and progress are posted on the WISER 
Intranet for partner information and collaboration.  

 

Processes and responsibilities for assessing uncertainty agreed at 
WISER Start-up meeting 

General 

• Sampling and uncertainty data collected and stored by each WP  
• Data coding must identify individual components of the sampling hierarchy (site,  

 sample, method, replicate, worker…) 
• If cost-effectiveness is to be assessed, cost (processing time) must be recorded 
• Samples collected external to WISER must be compatible methodologically and must 

 follow the same hierarchical sampling and data coding scheme 
• Analysis of sampling variance will be performed by each WP individually 
• WP6.1 can provide advice on sampling variance estimation, but only within its very  

limited resources 
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WP6.1 Responsibilities 

• Review the current status of estimation of uncertainty  
• Develop guidelines on the inclusion of uncertainty in the development and validation of 

indicators and develop methods to estimate the uncertainty of the different techniques 
and BQEs  

• Develop guidelines for quality assurance, harmonisation of methodologies and taxonomy 
and the assessment of procedural bias in sample processing 

• Advise on the design of data collection and statistical analyses for the uncertainty of 
metric data obtained in Modules 3 and 4 

• Produce a generally applicable uncertainty estimation tool (based on the STARBUGS 
software tool developed in STAR) for assessing confidence of status classes  

 

The first four of these bulleted responsibilities have already be partially achieved through the 
WISER uncertainty workshop and this report. 

 

Change of WP leader 

In May 2009, Iwan Jones left CEH and joined Queen Mary University of London (QMUL) and 
is therefore no longer formally involved in WISER. His CEH role as formal Leader of WISER 
WP6.1 has been taken over by Mike Dunbar of CEH, whom some will no from his involvement 
in the REBECCA and other projects.  

 

 

WP6.1 formal Deliverables 

D 6.1-1: Report on a workshop to bring together experts experienced with tool development and 
uncertainty estimation (Month 6, Lead person: Ralph Clarke (BourneU) – this document 

D 6.1-2: Manuscript reviewing components of uncertainty and their assessment, including 
guidelines for estimation and quality assurance (Month 30, lead person: CEH) 

D 6.1-3: Generally applicable software tool for assessing confidence of status class (Month 34, 
Lead person: Ralph Clarke (BourneU)) 
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Figure 19 Draft plan of WISER field sampling campaign for each WP. 
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