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Approach and rationale 

The broad objective of this analysis has been to quantify and compare the degree of temporal 

(inter-annual and monthly) and spatial (among countries and waterbodies) variation in lake 

phytoplankton metrics. The three focal metrics have been chlorophyll a concentration, PTI 

and total cyanobacterial biovolume. Though some previous studies (e.g. SNIFFER work) 

have aimed to quantify temporal variation in phytoplankton at the scale of a single lake 

system, we have attempted the complementary approach of conducting a large-scale (pan-

European) analysis that will give a more integrated picture of the degree of temporal 

uncertainty in phytoplankton metrics.  

To this end, we statistically modelled metric data calculated from the background dataset. We 

used linear mixed effects (LME) models to resolve the different independent spatial/temporal 

components of metric variation, while taking account of the nested (hierarchic) structure of 

the data set. In simple terms, we constructed a model that described the typical monthly 

pattern of variation in each metric and that allowed this monthly pattern to be modified as a 

function of lake attributes that might be expected to affect the course of phytoplankton 

seasonal succession, and therefore monthly metric variation. For example: 

Log10(Chl-a) ~ f [(Month*Latitude) + (Month*Longitude) + (Month*Altitude Type) + 

(Month*Humic Type) + (Month*Lake Type) + (Month*logTP)] 

(where month, altitude type, humic type and lake type are categorical variables) 

So, in this case, the interaction terms allow the “typical” monthly pattern in log10 chlorophyll 

a concentration to change as a function of latitude, longitude, altitude, humic content, lake 

type (e.g. high alkalinity-very shallow..) and log10 total phosphorus concentration. We feel 

that this makes more sense biologically than assuming the same monthly pattern in all lakes 

across the geographical range of the background data set. Within each model we set up a 

nesting (random effects) structure that describes the hierarchic nature of the data set: data 

from each sampling date are nested within month, which is nested within year, which is 

nested within lake, which is nested within country. We then went through a process of 

selecting the best combination of month-waterbody attribute interactions, so that we could 

remove waterbody attributes from the model if they were having only minimal effects on 

monthly variation in metrics.  

From these models we can obtain estimates of the variance in metric scores that arises: 

 Among countries, σ
2

c 

 Among waterbodies (within countries) , σ
2

w 

 Among years (within waterbodies, within countries) , σ
2

y 

 Among months (within years, within waterbodies, within countries) , σ
2

m 

The variance σ
2

m represents monthly variations in a given metric that are not captured by the 

“typical” pattern described by the fitted explanatory variables (the fixed effects). This 

variance can be interpreted as monthly metric variability around the pattern that is typical of a 
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given waterbody type. For example, in a “typical year” in a given lake type, we might expect 

a systematic increase in a metric throughout the summer. However, intra-annual variations in 

physico-chemical forcing or biotic interactions will generate fluctuations around this typical 

pattern in any given year, such that we are uncertain of whether any single sample is indeed 

characteristic of average conditions for the month within which it is collected. 

Within the fitted models, a residual metric variance (σ
2

r) is also estimated. Given the model 

structure described above, this residual variance will represent a number of other sources of 

metric variability. Within σ
2

r there will be some metric variability associated with shorter-

term (i.e. within-month) temporal variations in the phytoplankton assemblage. This variation 

would have been estimated from instances in the data set where >1 sample per month has 

been collected. However, there will also be an (unknown) contribution to σ
2

r from other 

sources, for instance differences in sampling site location, analyst and analytical procedures 

among samples. In the present analysis it has not been possible to explicitly determine the 

relative magnitude of the contributions of these sources of variability. Herein, we use σ
2

r as 

an estimate of the remaining sources of variability inherent in the metrics, after accounting 

for spatial variability (among waterbodies and countries) and the longer-term (inter-annual, 

monthly) aspects of temporal variability.  

For each of the three metrics we ran: 

1) An analysis of all background metric data for which latitude, longitude, altitude, lake 

type, humic type and TP data were available (dominated by data from N-GIG and 

CB-GIG, with minor contributions from Alpine-GIG and EC-GIG). 

2) Simplified (separate) analyses for N-GIG, CB-GIG and Med-GIG. In these analyses 

some of the variables used in the more integrated cross-GIG analysis (1) had to be 

dropped as they were redundant within a single GIG.  

In what follows we present results on the relative magnitude of temporal and spatial (among-

waterbody/country) metric variation. We specifically estimate the longer-term aspects of 

temporal variation; monthly and inter-annual scale temporal variation (σ
2
m + σ

2
y). We also 

present the residual metric variance (σ
2

r) to indicate the importance of other sources of 

variation, compared to spatial and temporal variation. It is possible to produce effects plots to 

show how monthly variations in metrics change with waterbody attributes, but this may be 

better left to a subsequent temporal uncertainty paper? 

We also demonstrate the effect of different sampling frequencies upon the level of monthly 

and inter-annual scale temporal sampling uncertainty. Using the estimated variance 

components, we calculated a measure of sampling variance to describe the degree of 

sampling uncertainty in the mean observed value of each metric for a waterbody, when based 

upon collecting samples from different numbers of years, and/or months within years (see 

Ralph Clarke’s presentations on WISERBUGS): 

Monthly and inter-annual scale temporal sampling variance of water body mean =  

 σ
2

y x (1- [N year/max year]) 

N year 

σ
2

m x (1- [N month/max month]) 

(N month x N year) 
+ 
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Where: 

σ
2

y  = year-level variance from mixed effects model 

σ
2

m = month-level variance from mixed effects model 

N year = number of years sampled 

N month= number of months sampled per year 

Max month = maximum number of months that can be sampled per year [for total 

cyanobacteria and PTI, max month =3 (July-September); for Chl-a, max month =6 (April-

September)] 

Max year= maximum number of years that can be sampled per reporting/monitoring period 

[set at 6 years; a WFD river basin monitoring cycle] 

 

Chlorophyll a (Chl-a) concentration 

Data on chlorophyll were very heavily skewed, and so they were log10 transformed before 

further analysis. Analyses used data from April-September. Analyses were conducted using 

the nlme, MuMIn and effects packages in R (Fox 2003, R Development Core Team 2009, 

Pinheiro et al. 2010, Barton 2011), assuming Gaussian errors.  

 For the cross-GIG analysis, and considering instances where all lake attribute data 

were present, 34920 rows of data were available, from 3391 waterbodies in 13 

countries. All lake typology classes were represented in the data set. The most optimal 

fitted model for this data set included interactions among all lake typology/location 

variables and month i.e. with none of the original explanatory variables removed. 

 For the N-GIG analysis, 31750 rows of data were available from 2885 waterbodies in 

5 countries. In this subset of the data there were relatively few high altitude data, and 

so these were combined with medium altitude data. In a few months, there were no 

data for certain lake types. We therefore split lake type into the constituent mean 

depth type and alkalinity type, to remove this problem. The most optimal fitted 

models collectively suggested that the monthly pattern of variation in log10 Chl-a 

concentration (in N-GIG) is affected by latitude, longitude, log10TP concentration, 

alkalinity type, mean depth type and humic type. 

 For the CB-GIG analysis, 3053 rows of data were available from 478 waterbodies in 8 

countries. Within the CB-GIG, alkalinity type and altitude type were redundant as the 

vast majority of lakes were of high alkalinity and at low altitude. These variables were 

therefore omitted from the analysis. The most optimal fitted models suggested that the 

monthly pattern of variation in log10 Chl-a concentration (in CB-GIG) is affected by 

latitude, longitude, mean depth type and log10TP concentration. 
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 For the Med-GIG analysis, 463 rows of data were available from 190 waterbodies in 6 

countries. However, this dataset is diminished drastically if only taking cases where 

all waterbody typology variables are known. Therefore, only interactions among 

monthly patterns in log10 Chl-a and log10TP concentration were modelled. Very few 

incidences of sub-monthly scale sampling were found in this subset of the background 

dataset, such that models attempting to distinguish monthly and within-monthly 

variability in metric scores failed to converge. Therefore, only models comparing 

inter-annual and spatial (among country and waterbody) components of variation 

could be run. 

 Analysis at the cross-GIG scale, as well as for N-GIG and CB-GIG data, suggested 

that the variance in log10 Chl-a concentration among countries and waterbodies was 

greater than the temporal variance (Table 1). The residual variance σ
2

r (representing 

other sources of metric variability) was consistently higher than estimates of 

variability at the monthly and inter-annual scales. Temporal variance was higher in 

CB-GIG than in N-GIG. For Med-GIG, inter-annual variance in log10 Chl-a 

concentration was less than among country and waterbody variance. As in the case of 

N-GIG and CB-GIG, the residual variance σ
2

r was high compared to the temporal 

variance estimate. Please note that, for Med-GIG, σ
2

r will include monthly variation. 

 Using the formula for monthly and inter-annual scale temporal sampling variance 

(above) we can show the extent to which uncertainty in metric values can be 

diminished when sampling in different numbers of years and months. This has been 

done for the cross-GIG, N-GIG and CB-GIG analyses, in which it was possible to 

distinguish monthly and inter-annual variance components (Figs. 1-3). From these 

analyses, it can be seen that the sampling variance (and associated uncertainty) 

reduces markedly when increasing the number of months sampled from 1 per year to 

2 per year and when sampling in 2-3 years, instead of 1. Of course, sampling in all 6 

months of all 6 years, eliminates month and year-level temporal uncertainty 

completely. However, the cross-GIG and N-GIG analyses suggest that sampling 

variance can be reduced dramatically by sampling in 2 months, in each of 3 years. 

Due to the higher level of temporal variability for chlorophyll a in CB-GIG, a greater 

degree of replication would be needed to achieve this same reduction in sampling 

variance (perhaps 3-4 months in each of 4 years). 

  



7 

 

 

Table 1. Components of variation in log10 Chl-a, expressed as variances. 

Variance component Cross-GIG N-GIG CB-GIG Med-GIG 

Country, σ
2
c 0.094 0.036 0.042 0.050 

Waterbody, σ
2
w 0.142 0.134 0.146 0.199 

Total spatial (σ
2
c + σ

2
w)* 0.237 0.170 0.189 0.249 

     

Year, σ
2
y 0.003 0.003 0.018 0.048 

Month, σ
2
m 0.015 0.013 0.021 - 

Residual, (σ
2
r) 0.032 0.030 0.058 0.068 

Total temporal (σ
2
y + σ

2
m) 0.018 0.016 0.039 0.048 

*spatial variance components were derived from a mixed-effects model with an intercept 

only (i.e. a null model). 
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Fig. 1. Changes in monthly and inter-annual scale temporal sampling variance for 

chlorophyll a, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the cross-GIG data set. 
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Fig. 2. Changes in monthly and inter-annual scale temporal sampling variance for 

chlorophyll a, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the N-GIG data set. 
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Fig. 3. Changes in monthly and inter-annual scale temporal sampling variance for 

chlorophyll a, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the CB-GIG data set. Note difference in scale 

compared to N-GIG and cross-GIG analyses. 
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PTI metric 

The PTI metric was not transformed prior to analysis. Analyses used data from July-

September. Analyses were conducted using the nlme, MuMIn and effects packages in R (Fox 

2003, R Development Core Team 2009, Pinheiro et al. 2010, Barton 2011), assuming 

Gaussian errors. 

 For the all-GIG analysis, and considering instances were all lake attribute data were 

present, 5186 rows of data were available, from 1253 waterbodies in 13 countries. 

There were relatively few high altitude data, and so these were combined with 

medium altitude data. The most optimal fitted models suggested that monthly 

variation in PTI scores is affected by log10 TP concentration and longitude. 

 For the N-GIG analysis, 3900 rows of data were available from 782 waterbodies in 5 

countries. The most optimal fitted models suggested that the monthly pattern of 

variation in PTI scores (in N-GIG) is affected by latitude, longitude, lake type and 

log10TP concentration. 

 For the CB-GIG analysis, 1243 rows of data were available from 450 waterbodies in 8 

countries. Within the CB-GIG, alkalinity type and altitude type were redundant as the 

vast majority of lakes were of high alkalinity and at low altitude. Humic type 

representation was also highly unbalanced: the majority of lakes had low humic 

content. These variables were therefore omitted from the analysis. The most optimal 

fitted models suggested that the monthly pattern of variation in PTI scores (in CB-

GIG) is affected by longitude and log10TP concentration. 

 For the Med-GIG analysis, 398 rows of data were available from 173 waterbodies in 5 

countries. However, this dataset is diminished drastically if only taking cases where 

all waterbody typology variables are known. Therefore, only interactions among 

monthly patterns in PTI scores and log10TP concentration were modelled. Very few 

incidences of sub-monthly scale sampling were found in this subset of the background 

dataset, such that models attempting to distinguish monthly and within-monthly 

variability in metric scores failed to converge. Therefore, only models comparing 

inter-annual and spatial (among country and waterbody) components of variation 

could be run.  

 Analysis at the cross-GIG scale, as well as for N-GIG and CB-GIG data, suggested 

that the variance in PTI scores among countries and waterbodies was greater than the 

temporal variance (Table 2). However, the residual variance σ
2

r was consistently 

higher than either the monthly or inter-annual temporal variance, especially for CB-

GIG and Med-GIG. 

 The formula for the monthly and inter-annual temporal sampling variance (above) 

was used following the cross-GIG, N-GIG and CB-GIG analyses, in which it was 

possible to distinguish monthly and inter-annual variance components (Figs. 4-6). 

From these analyses, it can be seen that this component of the sampling variance (and 

associated uncertainty) reduces markedly when increasing the number of months 

sampled from 1 per year to 2 per year and when sampling in 2-3 years, instead of 1. 
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All analyses suggest that sampling variance can be reduced dramatically by sampling 

in 2 months, in each of 3 years. In contrast to the findings for chlorophyll-a, there are 

only modest differences in the level of temporal uncertainty for the PTI metric, when 

comparing N-GIG and CB-GIG.  

Table 2. Components of variation in PTI, expressed as variances. 

Variance component Cross-GIG N-GIG CB-GIG Med-GIG 

Country, σ
2
c 0.280 0.058 0.070 0.031 

Waterbody, σ
2
w 0.181 0.202 0.080 0.143 

Total spatial* (σ
2
c + σ

2
w) 0.462 0.260 0.150 0.174 

     

Year, σ
2
y 0.014 0.015 0.024 0.015 

Month, σ
2
m 0.023 0.024 0.019 - 

Residual, σ
2

r 0.043 0.028 0.076 0.096 

Total temporal (σ
2
y + σ

2
m) 0.037 0.039 0.042 0.015 

*spatial variance components were derived from a mixed-effects model with an intercept 

only (i.e. a null model). 
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Fig. 4. Changes in the monthly and inter-annual scale temporal sampling variance for the 

PTI metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the cross-GIG data set. 
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Fig. 5. Changes in the monthly and inter-annual scale temporal sampling variance for the 

PTI metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the N-GIG data set. 
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Fig. 6. Changes in the monthly and inter-annual scale temporal sampling variance for the 

PTI metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the CB-GIG data set. 
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Total cyanobacterial biovolume (TCB) 

The TCB metric was log10 transformed prior to analysis.  Model selection and fitting was 

performed using MCMCglmm package (Hadfield 2010) in R (R Development Core Team 

2009) and comparison of DIC values.  Convergence of the chains was checked using the 

Gelman-Rubin-Brooks plots and diagnostics from the coda package (Plummer et al. 2006). 

Analyses used data from July-September. An exponential error structure was incorporated 

into the model for all analyses.  Therefore, variance estimates are based on the metric on the 

exponential scale. 

 For the all-GIG analysis, and considering instances where all lake attribute data were 

present, 5186 rows of data were available, from 1253 waterbodies in 13 countries.  

The most optimal fitted models suggested that the monthly pattern of variation in the 

TCB metric is affected by log10TP concentration, at the cross-GIG scale. 

 For the N-GIG analysis, 3900 rows of data were available from 782 waterbodies in 5 

countries. The most optimal fitted models suggested that the monthly pattern of 

variation in the TCB metric (in N-GIG) is not affected by any of the variables 

examined. 

 For the CB-GIG analysis, 1243 rows of data were available from 450 waterbodies in 8 

countries.  Within the CB-GIG, alkalinity type and altitude type were redundant as the 

vast majority of lakes were of high alkalinity and at low altitude. Humic type 

representation was also highly unbalanced: the majority of lakes had low humic 

content. These variables were therefore omitted from the analysis.  The most optimal 

fitted models suggested that the monthly pattern of variation in the TCB metric (in 

CB-GIG) is affected by log10TP concentration. 

 For the Mediterranean GIG analysis 398 rows of data were available from 173 

waterbodies in 5 countries. However, this dataset is diminished drastically if only 

taking cases where all waterbody typology variables are known. Therefore, only 

interactions between monthly patterns in the TCB metric and log10TP concentration 

were modelled. Very few incidences of sub-monthly scale sampling were found in 

this subset of the background dataset, such that models attempting to distinguish 

monthly and sub-monthly variability in metric scores could not be run. Therefore, 

only models comparing inter-annual and spatial (among country and waterbody) 

components of variation were run.  There was no significant monthly pattern in the 

variation in the metric with the level of log10TP.  Therefore, the yearly variance was 

estimated from a model fitted with only log10TP as a fixed effect.  For the Med-GIG 

analyses, the spatial variation is the main source of variation in the TCB metric. 

 Analysis at the cross-GIG scale, as well as for N-GIG and CB-GIG data, suggested 

that the variance in the TCB metric among countries and waterbodies was greater than 

the temporal (monthly, inter-annual) variance (Table 3). For Med-GIG, inter-annual 

variance in the TCB metric was less than among country and waterbody variance. 
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However, the residual variance σ
2

r was frequently much higher than either the 

monthly or inter-annual metric variance components.  

 The formula for monthly and inter-annual scale temporal sampling variance (above) 

was used following the cross-GIG, N-GIG and CB-GIG analyses (Figures 7-9), in 

which it was possible to distinguish monthly and inter-annual variance components.  

From these analyses for the cross-GIG and N-GIG data, it can be seen that the 

sampling variance (and associated uncertainty) reduces when increasing the number 

of months sampled per year and when sampling in 3-4 years. For the CB-GIG 

analysis, the sampling variance does not reduce markedly when increasing the number 

of months sampled, but it does when increasing the number of years sampled from 1 

year to 2-4 years.  

Table 3. Components of variation in log10(total cyanobacterial biovolume +1), expressed as 

variances from best fit models with an exponential error structure. 

Variance component Cross-GIG N-GIG CB-GIG Med-GIG 

Country, σ
2

c 13245 20781 0.966 49095 

Waterbody, σ
2

w 36264 54332 2.243 9090 

Total spatial* (σ
2
c + σ

2
w) 49509 75113 3.209 58185 

     

Year, σ
2

y 7637 6907 0.650 28348 

Month, σ
2

m 864 659 0.014 - 

Residual, σ
2

r 35854 41956 0.015 43880 

Total temporal (σ
2

y + σ
2

m) 8501 7566 0.664 28348 

*spatial variance components were derived from a mixed-effects model with no explanatory 

variables (i.e. a null model). 
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Fig. 7. Changes in the monthly and inter-annual scale temporal sampling variance for the 

TCB metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the cross-GIG data set. 
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Fig. 8. Changes in the monthly and inter-annual scale temporal sampling variance for the 

TCB metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the N-GIG dataset. 
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Fig. 9.  Changes in the monthly and inter-annual scale temporal sampling variance for the 

TCB metric, assuming monitoring schemes which differ in the number of years and months-

per-year sampled. Analysis based upon the CB-GIG data set. 
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Key messages 

 For log10 Chl-a concentration, PTI and log10 total cyanobacterial biovolume, inter-

annual and monthly temporal variation was less than that found among waterbodies 

distributed along a wide pressure gradient. This would suggest that monthly and inter-

annual scale temporal variation in these metrics is not of a great enough magnitude to 

occlude differences between systems that are experiencing different lake-level 

pressures.  

 However, residual metric variance (σ
2

r) was frequently high compared to monthly and 

inter-annual temporal variation. This was especially pronounced for the total 

cyanobacterial biovolume metric. The magnitude of the estimated residual variance 

components suggests the presence of additional, important, sources of metric 

variability. While short-term (within-month) temporal variation in the phytoplankton 

assemblage will contribute to this variability, σ
2

r will also contain within it other 

sources of variation that are not directly linked to short-term plankton dynamics e.g. 

differences in sampling/sample processing procedures and analyst identity (Thackeray 

et al. 2011). Future analyses are needed to explicitly determine the independent 

components of σ
2

r in order to quantify short term metric variation, independently of 

other uncontrolled sources of variation, and within the context of changes at the 

monthly and inter-annual scales. 

 Herein, we have focussed our investigation on how the longer-term aspects of 

temporal uncertainty (monthly, inter-annual scale) can be affected by monitoring 

programme design. Estimates of monthly and inter-annual scale temporal sampling 

variance (i.e. the variability in waterbody mean metric scores that would arise from 

sampling different combinations of years, and months within each year) show that 

changes in sampling strategy can reduce this component of temporal uncertainty in 

metric scores markedly. For the PTI metric in N-GIG and CB-GIG, and log10 Chl-a 

concentration in N-GIG, sampling in 2 months in each of 3 years would achieve a 

marked reduction in temporal metric uncertainty. For log10 Chl-a concentration in CB-

GIG, more temporal replication would be needed to achieve this same level of 

reduction in uncertainty. For the total cyanobacterial metric, a greater number of years 

may need to be sampled to reduce the overall monthly and inter-annual scale temporal 

sampling variance. In N-GIG, sampling in 2 months in each of 4 years would reduce 

the inter-annual and monthly component of metric uncertainty considerably, but for 

CB-GIG an increase in the number of sampling months would not have a major effect 

on sampling uncertainty. 

 There is no single best solution in terms of sampling frequency, since temporal 

sampling uncertainty will always diminish with increasing temporal replication. The 

key issue is the need to reach an optimal trade-off between the need for monitoring 

precision, and the costs of monitoring itself. However, please note that the notion of 

reaching an optimally cost-effective frequency of sampling (expressed simply in terms 

of numbers of months and numbers of years sampled) implicitly assumes that months 

and years are fully substitutable e.g. all months within the predetermined seasonal 
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window are ecologically equivalent. This assumption may not be met in real 

communities.  

 Attempts to make robust estimates of temporal and spatial components of variation in 

phytoplankton metrics are dependent upon having detailed and comprehensive 

monitoring data. It is necessary for sample data to be available for different months 

across a number of years, but also for multiple dates within months (at least in some 

cases). Furthermore, lake attribute/classification variables are essential if we are to fit 

biologically meaningful models that can capture gradients in the seasonality of 

phytoplankton communities.  

 Results from the log10 Chl-a and total cyanobacterial biovolume analyses suggested 

that temporal variation did vary by GIG, and that different levels of temporal sample 

replication would be needed to achieve the same level of precision in waterbody mean 

metric values in different GIGs. Therefore, decisions on optimal sampling frequency 

may also differ by GIG.  

 Our approach suggested that among-lake differences in the seasonal, within-year, 

patterns in phytoplankton metrics could be modelled effectively with the available 

explanatory variables. We will explore this further in a temporal uncertainty paper. 
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